142 research outputs found

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    Investigation of municipal solid waste (MSW) and industrial landfills as a potential source of secondary raw materials

    Get PDF
    Many of the secondary raw materials (SRM) in landfills constitute valuable and scarce natural resources. It has already been recognised that the recovery of these elements is critical for the sustainability of a number of industries and SRM recov¬ery from anthropogenic waste deposits represents a significant opportunity. In this study, the characterisation of the different waste fractions and the amount of SRM that can potentially be recovered from two landfill sites in Finland is presented. The first site was a municipal solid waste (MSW) landfill site and it was specifically in¬vestigated for its metals, SRM, plastics, wood, paper, and cardboard content as well as its fine fraction (<20 mm). The second site was an industrial landfill site contain¬ing residual wastes from industrial processes including 1) aluminium salt slag from refining process of aluminium scrap and 2) shredding residues from automobiles, household appliances and other metals containing waste. This site was investigated for its metals and SRM recovery potential as well as its fine fraction. Results suggest that the fine fraction offers opportunities for metal (Cr, Cu, Ni, Pb, and Zn) and SRM extraction and recovery from both landfill site types while the chemical composition of the industrial waste landfill offered greater opporutinity as it was comparable to typical aluminium salt slags. Nevertheless, the concentrations of rare earth metals (REE) and other valuable elements were low even in comparison with the concentra¬tions found in the Earth’s crust. Therefore mining landfill sites only for their metals or SRM content is not expected to be financially viable. However, other opportunities, such as waste-derived fuels from excavated materials especially at MSW landfill sites, still exists and fosters the application and feasibility of landfill mining

    Assessing the opportunities of landfill mining as a source of critical raw materials in Europe

    Get PDF
    Many of the metals in landfill constitute valuable and scarce natural resources. It has already been recognised that the recovery of these elements is critical for the sustainability of a number of industries. Arsenic (which is an essential part of the production of transistors and LEDs) is predicted to run out sometime in the next five to 50 years if consumption continues at the present rate. Nickel used for anything involving stainless steel and platinum group metals (PGMs) used in catalytic converters, fertilisers and others are also identified as critical materials (CM) to the EU economy at risk of depletion However, despite the increasing demand, none of this supply is supported by recycling. This is due to the high cost of recovery from low concentrations when compared to conventional mining. As demonstrated by the two pilot case studies of this study, mining landfill sites only for their metals content is not expected to be financially viable. However, other opportunities such as Waste-derived fuels from excavated materials exist which if combined , form the concept of ‘enhanced landfill mining’. have the potential to be highly energetic. The energy potential is comparable to the levels of energy of Refuse-Derived Fuels (RDF) produced from non-landfilled wastes

    A bone grease processing station at the Mitchell Prehistoric Indian Village: archaeological evidence for the exploitation of bone fats

    Get PDF
    © Association for Environmental Archaeology 2015. Author's accepted manuscript version deposited in accordance with SHERPA RoMEO guidelines. The definitive version is available at http://www.maneyonline.com/doi/abs/10.1179/1749631414Y.0000000035.Recent excavations at the Mitchell Prehistoric Indian Village, an Initial Middle Missouri site in Mitchell, South Dakota have revealed a large, clay-lined feature filled with fractured and fragmented bison bones. Fracture and fragmentation analysis, along with taphonomic evidence, suggests that the bones preserved within the feature represent evidence of prehistoric bone marrow and bone grease exploitation. Further, the character of the feature suggests that it served as a bone grease processing station. Bone fat exploitation is an activity that is frequently cited as a causal explanation for the nature of many fractured and fragmented bone assemblages in prehistory, and zooarchaeological assemblages have frequently been studied as evidence of bone fat exploitation. The Mitchell example provides some of the first direct, in-situ archaeological evidence of a bone grease processing feature, and this interpretation is sustained by substantial analytical evidence suggesting bone fat exploitation. This new evidence provides a clearer concept of the nature of bone fat exploitation in prehistory as well as an indication of the scale and degree to which bone grease exploitation occurred at the Mitchell site. Finally, this research demonstrates the importance of careful zooarchaeological and taphonomic analysis for the interpretation of both artifactual remains as well as archaeological features

    Collaborative environment for energy-efficient buildings at an early design stage

    Get PDF
    This paper provides an approach for creating a collaborative environment for energy efficient buildings highlighting the issues required to be addressed at an early design phase. The paper will discuss a design scenario for a new built and suggest system architecture for implementing such scenario through the use of advanced simulation tools and modelling techniques to improve current practice in an early design phase. The suggested system architecture will allow multi-disciplinary teams to collectively and individually explore various energy solutions in a 3D interactive workspace to achieve optimum energy efficiency at building level

    RNAi screen for NRF2 inducers identifies targets that rescue primary lung epithelial cells from cigarette smoke induced radical stress

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE) induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the 'druggable' genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism

    Order and Stochastic Dynamics in Drosophila Planar Cell Polarity

    Get PDF
    Cells in the wing blade of Drosophila melanogaster exhibit an in-plane polarization causing distal orientation of hairs. Establishment of the Planar Cell Polarity (PCP) involves intercellular interactions as well as a global orienting signal. Many of the genetic and molecular components underlying this process have been experimentally identified and a recently advanced system-level model has suggested that the observed mutant phenotypes can be understood in terms of intercellular interactions involving asymmetric localization of membrane bound proteins. Among key open questions in understanding the emergence of ordered polarization is the effect of stochasticity and the role of the global orienting signal. These issues relate closely to our understanding of ferromagnetism in physical systems. Here we pursue this analogy to understand the emergence of PCP order. To this end we develop a semi-phenomenological representation of the underlying molecular processes and define a “phase diagram” of the model which provides a global view of the dependence of the phenotype on parameters. We show that the dynamics of PCP has two regimes: rapid growth in the amplitude of local polarization followed by a slower process of alignment which progresses from small to large scales. We discuss the response of the tissue to various types of orienting signals and show that global PCP order can be achieved with a weak orienting signal provided that it acts during the early phase of the process. Finally we define and discuss some of the experimental predictions of the model
    • 

    corecore